
Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	Copyright	©	2015,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

	
	
GeAng	inside	the	SQL	paEern	
matching	process	
	
	
Hermann	Bär	
Director	of	Product	Management	
Data	Warehousing	

DEEP	DIVE	INTO	12c	
MATCH_RECOGNIZE		

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Agenda	

SQL	PaEern	Matching	–	quick	recap	

Using	built-in	measures	to	understand	your	paEern	

Greedy	vs.	reluctant	quanSfiers	

Understanding	state	machines	

Backtracking	

Summary	

1	

2	

3	

4	

5	

6	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 3	

Quick	recap	
SQL	PaGern	Matching	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

PaEern	matching	in	sequences	of	rows	

• Currently	paEern	recogniSon	in	SQL	is	difficult	
– Use	mulSple	self	joins	(not	good	for	*)	

•  T1.handset_id	<>	T2.handset_id	<>T3.handset_id	AND….	T1.sim_id=�X�	AND	T2.Sme	BETWEEN	
T1.Sme	and	T1.Sme+2….	

– Use	recursive	query	for	*	(WITH	clause,	CONNECT	BY)	
– Use	Window	FuncSons	(likely	with	mulSple	query	blocks)	

The	Challenge	–	a	real-world	business	problem	
	
� … detect if a phone card went from phone A to phone B to phone C... and

back to phone A within ‘N‘ hours... �

�… and detect if pattern above occurs at least ‘N’ times within 7 days …��

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Sample	PaEern	Matching	SQL	

�SELECT symbol, tstamp, price, !
 first_down, first_price, last_up, last_price!
FROM ticker MATCH_RECOGNIZE (!
 PARTITION BY symbol ORDER BY tstamp !
 MEASURES FIRST(strt.tstamp) AS first_down,!
 FIRST(strt.price) as first_price,!
 FINAL LAST(up.tstamp) AS last_up,!
 FINAL LAST(up.price) as last_price!
 ALL ROWS PER MATCH !
 PATTERN (strt down+ up+) !
 DEFINE !
 down AS (price <= PREV(price)),!
 up AS (price >= PREV(price))!
)!
ORDER BY symbol, tstamp;!

5	

Finding	V	shaped	paGerns	in	a	Tcker	stream		

Ordered	and	parSSoned	stream	
of	rows	

�SELECT symbol, tstamp, price, !
 first_down, first_price, last_up, last_price!
FROM ticker MATCH_RECOGNIZE (!
 PARTITION BY symbol ORDER BY tstamp !
 MEASURES FIRST(strt.tstamp) AS first_down,!
 FIRST(strt.price) as first_price,!
 FINAL LAST(up.tstamp) AS last_up,!
 FINAL LAST(up.price) as last_price!
 ALL ROWS PER MATCH !
 PATTERN (strt down+ up+) !
 DEFINE !
 down AS (price <= PREV(price)),!
 up AS (price >= PREV(price))!
)!
ORDER BY symbol, tstamp;!

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Sample	PaEern	Matching	SQL	

�SELECT symbol, tstamp, price, !
 first_down, first_price, last_up, last_price!
FROM ticker MATCH_RECOGNIZE (!
 PARTITION BY symbol ORDER BY tstamp !
 MEASURES FIRST(strt.tstamp) AS first_down,!
 FIRST(strt.price) as first_price,!
 FINAL LAST(up.tstamp) AS last_up,!
 FINAL LAST(up.price) as last_price!
 ALL ROWS PER MATCH !
 PATTERN (strt down+ up+) !
 DEFINE !
 down AS (price <= PREV(price)),!
 up AS (price >= PREV(price))!
)!
ORDER BY symbol, tstamp;!

6	

Finding	V	shaped	paGerns	in	a	Tcker	stream		

Variable	names	and	operators	

Ordered	and	parSSoned	stream	
of	rows	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Sample	PaEern	Matching	SQL	

�SELECT symbol, tstamp, price, !
 first_down, first_price, last_up, last_price!
FROM ticker MATCH_RECOGNIZE (!
 PARTITION BY symbol ORDER BY tstamp !
 MEASURES FIRST(strt.tstamp) AS first_down,!
 FIRST(strt.price) as first_price,!
 FINAL LAST(up.tstamp) AS last_up,!
 FINAL LAST(up.price) as last_price!
 ALL ROWS PER MATCH !
 PATTERN (strt down+ up+) !
 DEFINE !
 down AS (price <= PREV(price)),!
 up AS (price >= PREV(price))!
)!
ORDER BY symbol, tstamp;!

7	

Finding	V	shaped	paGerns	in	a	Tcker	stream		

Ordered	and	parSSoned	stream	
of	rows	

Variable	names	and	operators	

Variable	definiSon	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Sample	PaEern	Matching	SQL	

�SELECT symbol, tstamp, price, !
 first_down, first_price, last_up, last_price!
FROM ticker MATCH_RECOGNIZE (!
 PARTITION BY symbol ORDER BY tstamp !
 MEASURES FIRST(strt.tstamp) AS first_down,!
 FIRST(strt.price) as first_price,!
 FINAL LAST(up.tstamp) AS last_up,!
 FINAL LAST(up.price) as last_price!
 ALL ROWS PER MATCH !
 PATTERN (strt down+ up+) !
 DEFINE !
 down AS (price <= PREV(price)),!
 up AS (price >= PREV(price))!
)!
ORDER BY symbol, tstamp;!

8	

Finding	V	shaped	paGerns	in	a	Tcker	stream		

Ordered	and	parSSoned	stream	
of	rows	

Measures	

Variable	names	and	operators	

Variable	definiSon	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Consistent	results	
• ORDER	BY	clause	is	opTonal	in	syntax	(and	ANSI	proposal)	

• My	data	is	already	sorted	so	I	don’t	need	ORDER	BY	-	correct?	
– TempSng	to	ignore	ORDER	BY	clause	and	assume	data	will	be	correctly	ordered	
– Without	ORDER	BY,	consistent	results	are	not	guaranteed!	

• Always	include	ORDER	BY	clause		
– If	order	of	two	rows	in	a	parSSon	is	not	determined	by	ORDER	BY	results	(non-unique	
order	by	key),	the	result	will	be	non-determinisSc	

– If	you	have	non	unique	order	by	keys	within	parSSon,	consider	adding	addiSonal	
order	by	columns	to	make	order	by	unique	and	determinisSc	

– If	Oracle	can	suppress	the	order	by	then	it	will	do	so!	
9	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 10	

Using	built-in	debugging	tools	to	help	you	
understand	the	paGern	matching	process	

Built-in	Measures	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Two	key	built-in	measures	
1.  MATCH_NUMBER()		

– Returns	an	integer	to	show	which	rows	are	members	of	which	match	
– Assigns	the	same	number	to	each	row	of	a	specific	match	
– For	instance,	all	the	rows	in	the	first	match	found	in	a	row	paEern	parSSon	are	
assigned	the	match	number	value	of	1	

– Note	that	match	numbering	starts	over	again	at	1	in	each	row	paEern	parSSon	

2.  CLASSIFIER()	
– Shows	which	rows	map	to	which	variable	

11	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Example	code	using	two	built-in	measures	

�SELECT symbol, tstamp, price, mn, pattern, !
 first_down, first_price, last_up, last_price!
FROM ticker MATCH_RECOGNIZE (!
 PARTITION BY symbol ORDER BY tstamp !
 MEASURES MATCH_NUMBER() AS mn,!
 CLASSIFIER() as pattern,!
 FIRST(strt.tstamp) AS first_down,!
 FIRST(strt.price) as first_price,!
 FINAL LAST(up.tstamp) AS last_up,!
 FINAL LAST(up.price) as last_price!
 ALL ROWS PER MATCH !
 PATTERN (strt down+ up+) !
 DEFINE !
 down AS (price <= PREV(price)),!
 up AS (price >= PREV(price))!
)!
ORDER BY symbol, tstamp;!

12	

Finding	V	shaped	paGerns	in	a	Tcker	stream		

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

1.	MATCH_NUMBER()	
• MATCH_NUMBER	assigns	the	same	
number	to	each	row	of	a	specific	
match	
– First	match	of	complete	paEern	found	
in	a	parSSon	assigned	match_number()	
value	of	1	

– Next	match	gets	value	of	2,	etc.	

• Note	that	match	numbering	starts	
over	again	at	1	in	each	row	paEern	
parSSon	

13	

PA
RT

IT
IO
N
	

	1
	

PA
RT

IT
IO
N
	

	2
	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

2.	CLASSIFIER()	
• CLASSIFIER()	shows	which	rows	map	to	
which	variable:	STRT,	DOWN	or	UP!

•  In	this	example,		
– rows	1,	7	,	11,	15	map	to	variable	STRT		
– Rows	2,	8,	12,	16	map	to	variable	DOWN		
– remaining	rows	map	to	variable	UP!

• Note:	CLASSIFER()	cannot		be	used	with	
ONE ROW PER MATCH!
– Not	applicable	to	aggregated	result	

14	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 15	

Using	greedy	and	reluctant	quanTfiers	in	your	
paGern	definiTon	

Greedy	QuanTfiers		

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Defining	PATTERNs	
• PATTERN component	is	used	to	specify	regular	expressions	
• Regular	expression	is	built	from	variable	names	and	operators	

– Operators	can	be	concatenaSon,	grouping,	alternaSon,	permutes,	quanSfiers,	…	
– A	large	library	of	built-on	quanSfiers	is	available	
– Regular	expressions	are	amazingly	powerful	and	deeply	expressive	

• What	is	a	regular	expression?	
– a	regular	expression	(some1mes	called	a	ra1onal	expression)	is	a	sequence	of	
characters	that	define	a	search	pa:ern,	mainly	for	use	in	pa:ern	matching	with	
strings,	or	string	matching,	i.e.	"find	and	replace”	-	like	opera1ons	

16	

Wikipedia:	hEps://en.wikipedia.org/wiki/Regular_expression		

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

What	is	a	regular	expression?	
• Regular	expressions	used	to	specify	a	set	of	strings	(tokens	and	quanSfiers)	
required	for	a	parScular	purpose	

• QuanSfier	aver	a	token	or	group	specifies	how	oven	that	preceding	
element	is	allowed	to	occur	

• Most	common	quanSfiers	are:	
– QuesSon	mark	?,	indicates	zero	or	one	match	
– Asterisk	*,	indicates	need	for	zero	or	more	matches	
– Plus	sign	+,	indicates	need	for	one	or	more	matches	

• Oracle's	regular	expressions	are	slightly	different	
– Row	paGern	variables	are	defined	by	Boolean	condiTons	rather	than	characters	or	
sets	of	characters	

17	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

QuanSfiers	used	in PATTERN clause	
• POSIX basic and extended quantifiers:

– * 0 or more matches
– + 1 or more matches
– ? 0 or 1 match
– {n} exactly n matches
– {n,} n or more matches
– {n, m} at least n but not more than m (inclusive) matches
– {, m} at most m (inclusive) matches

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

How	to	use	quanSfiers	
• The following are examples of using quantifiers:

– A* matches 0 or more iterations of variable A
– A{3,6} matches 3 to 6 iterations of variable A
– A{,4} matches 0 to 4 iterations of variable A

• A is defined in the DEFINE component of the MATCH_RECOGNIZE
clause
– For example: A AS (price <= PREV(price))

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

• Pattern quantifiers are referred to as greedy
– Attempt to match as many instances as possible of the regular expression on

which they are applied

• Reluctant quantifiers use a question mark ? as additional suffix
– Attempt to match as few instances as possible of the regular expression on

which they are applied

• Convert greedy to reluctant quantifier by adding additional “?”
– Examples: ?? or *? or +? or {n, m }?!

Greedy	and	reluctant	quanSfiers	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Example	–	using	greedy	quanSfiers	

�SELECT symbol, tstamp, price, mn, pattern, !
 first_down, first_price, last_up, last_price!
FROM ticker MATCH_RECOGNIZE (!
 PARTITION BY symbol ORDER BY tstamp !
 MEASURES MATCH_NUMBER() AS mn,!
 CLASSIFIER() as pattern,!
 FIRST(strt.tstamp) AS first_down,!
 FIRST(strt.price) as first_price,!
 LAST(up.tstamp) AS last_up,!
 LAST(up.price) as last_price!
 ALL ROWS PER MATCH !
 PATTERN (strt down+ up+) !
 DEFINE !
 down AS (price <= PREV(price)),!
 up AS (price >= PREV(price))!
)!
WHERE symbol = 'ACME’!
ORDER BY symbol, tstamp;!

21	

Finding	V	shaped	paGerns	in	a	Tcker	stream	using	plus-sign	greedy	quanTfier	

Using	the	“+”	greedy	
quanTfier		

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Using	greedy	quanSfiers	

22	

Matching	to	variable	DOWN	takes	precedence	over	UP	on	row	13	
0	

5	

10	

15	

20	

25	

30	

Conflict:	horizontal	area	
could	be	mapped	to	

DOWN	or	UP	
		

Result:	Greedy	DOWN	
matches	as	many	

instances	possible	to	
DOWN	before	matching	to	

UP	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Example	-	using	a	reluctant	quanSfier	

�SELECT symbol, tstamp, price, mn, pattern, first_down, first_price, last_up,
last_price!
FROM ticker MATCH_RECOGNIZE (!
 PARTITION BY symbol ORDER BY tstamp !
 MEASURES MATCH_NUMBER() AS mn,!
 CLASSIFIER() as pattern,!
 FIRST(strt.tstamp) AS first_down,!
 FIRST(strt.price) as first_price,!
 LAST(up.tstamp) AS last_up,!
 LAST(up.price) as last_price!
 ALL ROWS PER MATCH !
 PATTERN (strt down+? up+) !
 DEFINE !
 down AS (price <= PREV(price)),!
 up AS (price >= PREV(price))!
)!
WHERE symbol = 'ACME’!
ORDER BY symbol, tstamp;!

23	

Finding	V	shaped	paGerns	in	a	Tcker	stream	using	quesTon-mark	reluctant	quanTfier	

What	happens	if	DOWN	
uses	?	to	make	quanTfier	

‘reluctant’	.	.	.		

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Using	a	reluctant	quanSfiers	

24	

Matching	to	variable	UP	takes	precedence	over	DOWN	on	row	13	
0	

5	

10	

15	

20	

25	

30	

Records	matches	to	UP	
before	considering	

reluctant	DOWN	again	aver	
having	found	one	match	of	
DOWN	already	(paEern	

saSsfied)	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 25	

…and	why	you	need	to	care	about	them!	

Understanding	State	
Machines	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

MATCH_RECOGNIZE	and	State	Machines	
• CompilaSon	phase	generates	a	finite	state	machine	FSM		

	

A	finite-state	machine	(FSM)	or	finite-state	automaton	(plural:	automata),	or	simply	a	
state	machine,	is	a	mathema1cal	model	of	computa3on	used	to	design	both	computer	
programs	and	sequen1al	logic	circuits.	It	is	conceived	as	an	abstract	machine	that	can	
be	in	one	of	a	finite	number	of	states.	The	machine	is	in	only	one	state	at	a	3me;	the	
state	it	is	in	at	any	given	1me	is	called	the	current	state.	It	can	change	from	one	state	to	
another	when	ini1ated	by	a	triggering	event	or	condi3on;	this	is	called	a	transi1on.		
A	par1cular	FSM	is	defined	by	a	list	of	its	states,	and	the	triggering	condi1on	for	each	
transi1on.		

	

	

Reference	from	wikipedia	-	hEps://en.wikipedia.org/wiki/Finite-state_machine	

26	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

TurnsSle	State	Machine	

27	

•  	Has	two	states:	Locked	and	Unlocked	
•  Two	events	affect	its	state:		

– PuAng	a	coin	in	the	slot	(coin)		
– Pushing	the	arm	(push)	

•  Locked	state,	pushing	on	the	arm	has	no	effect	
• PuAng	a	coin	in	shivs	the	state	from	Locked	to	
Unlocked	
– PuAng	addiSonal	coins	in	has	no	effect;		

• Pushing	through	the	arms,	giving	a	push	input,	
shivs	the	state	back	to	Locked	

Images	courtesy	of	wikipedia	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

MATCH_RECOGNIZE	and	State	Machines	
•  State	machine	is	constructed	using	informaSon	in	PATTERN	and	DEFINE	components	
•  State	machine	represented	by	a	directed	graph	called	a	state	diagram		

–  Each	state	is	represented	by	a	node	(circle)	
–  Edges	(arrows)	show	transiSons	from	one	state	to	another.		

•  Labeled	with	the	event	(condiSon)	that	triggers	transiSon.		
–  Events	(condiSons)	that	don't	cause	a	change	of	state	are	represented	by	a	circular	arrow	returning	to	
the	original	state.	

•  Graph	representaSon	of	(STRT	DOWN+?	UP+	FLAT+)	

		
	

–  Note	the	precedence	of	UP	over	DOWN	for	reluctant	quanSfier	DOWN	

28	

0	Start	 State	1	
(strt)	

State	3	
(up)	

State	2	
(down)	

down	

up	

down	strt	 up	 State	4	
(flat)	

flat	

flat	

event	

Precedence	is	to	read	from	top	->down	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

MATCH_RECOGNIZE	plans	based	on	State	Machines	
• CompilaSon	phase	of	MATCH_RECOGNIZE	generates	a	finite	state	machine		
• Details	of	PATTERN	component	determine	if	state	machine	is:	
1.  DeterminisSc	Finite	Auto	(DFA)	

•  Each	of	its	transiSons	is	uniquely	determined	by	its	source	state	and	event	
•  DFA	uses	an	efficient	algorithm	without	backtracking,	runs	in	linear	Sme	

2.  NondeterminisSc	Finite	Auto	(NFA)	
•  Next	state	of	an	NFA	depends	not	only	on	the	current	event,	but	also	possibly	on	an	arbitrary	

number	of	subsequent	events	
•  NFA	implements	back	tracking	+	other	opSmizaSon	techniques	like	memoizaSon*	

29	

*	hEps://en.wikipedia.org/wiki/MemoizaSon	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

MATCH_RECOGNIZE	plans	based	on	State	Machines	
Explain	plan	indicates	which	algorithm	is	used:	

30	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

New	keywords	in	explain	plans	
•  Four	new	key	words	relaSng	to	paEern	matching	that	will	appear	in	your	
explain	plan:	

1. MATCH	RECOGNIZE	

2. DETERMINISTIC	FINITE	AUTO	

3. SORT	

4. BUFFER	

31	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

OpSmizer	keywords	

•  SORT	–	input	data	needs	to	be	sorted	before	execuSng	the	state	machine	
constructed	for	paEern	recogniSon	

• BUFFER	–	rows	of	input	table	expression	come	in	the	order	required	by	
MATCH_RECOGNIZE	
– Sort	is	used	during	paEern	recogniSon	just	for	buffering	purpose	

32	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

DeterminisSc	state	machine	

SELECT *!
FROM Ticker!
MATCH_RECOGNIZE (!
 PARTITION BY symbol ORDER BY tstamp!
 MEASURES strt.tstamp AS start_tstamp,!
 LAST(down.tstamp) AS b_tstamp,!
 LAST(up.tstamp) AS e_tstamp!
 ONE ROW PER MATCH!
 AFTER MATCH SKIP TO LAST y!
 PATTERN (strt down up)!
 DEFINE!
 down AS price < PREV(price),!
 up AS price > PREV(price)!
) WHERE symbol= ‘ACME’ ;!

33	

No	backtracking	and	runs	in	linear	Tme	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

DeterminisSc	state	machine	

SELECT *!
FROM Ticker!
MATCH_RECOGNIZE (!
 PARTITION BY symbol ORDER BY tstamp!
 MEASURES strt.tstamp AS start_tstamp,!
 LAST(down.tstamp) AS b_tstamp,!
 LAST(up.tstamp) AS e_tstamp!
 ONE ROW PER MATCH!
 PATTERN (strt down up*)!
 DEFINE!
 down AS price < PREV(price),!
 up AS price > PREV(price)!
) WHERE symbol= ‘ACME’ ;!

34	

No	backtracking	and	runs	in	linear	Tme	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Non-determinisSc	state	machine	

SELECT *!
FROM Ticker!
MATCH_RECOGNIZE (!
 PARTITION BY symbol ORDER BY tstamp!
 MEASURES strt.tstamp AS start_tstamp,!
 LAST(down.tstamp) AS b_tstamp,!
 LAST(up.tstamp) AS e_tstamp!
 ONE ROW PER MATCH!
 AFTER MATCH SKIP TO LAST up!
 PATTERN (strt down* up+)!
 DEFINE!
 down AS price <= PREV(price),!
 up AS price >= PREV(price)!
) WHERE symbol= ‘ACME’ ;!

35	

Determinism	unknown,	backtracking	in	place	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 36	

Backtracking	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

SeAng	the	scene	–	searching	for	‘W’	paEerns	
�SELECT symbol, mn, tstamp, pattern, price, !
first_price, first_price, last_price!
FROM ticker MATCH_RECOGNIZE (!
 PARTITION BY symbol ORDER BY tstamp!
 MEASURES MATCH_NUMBER() AS mn,!
 CLASSIFIER() AS pattern,!
 FIRST(strt.tstamp) AS first_x,!
 FIRST(strt.price) AS first_price,!
 LAST(z.tstamp) AS last_z,!
 LAST(z.price) AS last_price!
 ALL ROWS PER MATCH WITH UNMATCHED ROWS!
 PATTERN (strt x+ y+ w+ z+)!
 DEFINE x AS (price < PREV(price)),!
 y AS (price > PREV(price)),!
 w AS (price < PREV(price)),!
 z AS (price > PREV(price)))!
WHERE symbol = 'OSCORP';!

37	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Results	for	W-paEern	search	
• Points	to	note:	
•  Line	1	is	not	matched	because	
the	2nd	element	of	our	paEern,	
the	first	down	test	X,	fails	since	
price	on	line	1	is	the	same	as	
price	on	line	2	

• PaEern	STRT	is	matched	at	line	2	
– Matching	conSnues	unSl	line	8	
– Line	8	completes	the	first	“W”	

• Non-determinisSc	state	machine	
– Backtracking	will	be	used	

38	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Extending	the	paEern	to	test	final	price	vs.	iniSal	price	
�SELECT symbol, mn, tstamp, pattern,!
 price, first_price, last_price!
FROM ticker MATCH_RECOGNIZE (!
 PARTITION BY symbol ORDER BY tstamp!
 MEASURES MATCH_NUMBER() AS mn,!
 FIRST(strt.tstamp) AS first_x,!
 FIRST(strt.price) AS first_price,!
 LAST(z.tstamp) AS last_z,!
 last(z.price) AS last_price,!
 classifier() AS pattern!
 ALL ROWS PER MATCH WITH UNMATCHED ROWS!
 PATTERN (STRT X+ Y+ W+ Z+ AVGP)!
 DEFINE X AS (price < PREV(price)),!
 Y AS (price > PREV(price)),!
 W AS (price < PREV(price)),!
 Z AS (price > PREV(price)),!
 AVGP AS (last(z.price) < strt.price*1.5)) ;!

39	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Comparing	results	of	first	and	second	statement	

40	

What’s	going	on	?	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Comparing	results	of	first	and	second	statement	
Notable	differences	
• Row	2	is	not	matched	anymore	
to	always-true	event	STRT	

•  STRT	variable	now	matched	at	
row	3.	

• W-paEern	sSll	ends	at	row	8	
• Row	9	is	now	mapped	to	variable	
AVGP	

• Backtracking	in	acTon	

41	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Different	paEern	match	due	to	non-determinisSc	state	

42	

(STRT X+ Y+ W+ Z+ AVGP)	

0	Start	 State	1	
(strt)	

State	3	
(y)	

State	2	
(x)	

State	4	
(w)	

x	 y	

w	

x	strt	

y	
State	5	

(z)	
State	6	
(avgp)	

z	

avgp	

w	

z	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

0	Start	 State	1	
(strt)	

State	3	
(y)	

State	2	
(x)	

State	4	
(w)	

x	 y	

w	

x	strt	

y	
State	5	

(z)	
State	6	
(avgp)	

z	

avgp	

w	

z	

Different	paEern	match	due	to	non-determinisSc	state	

43	

(STRT X+ Y+ W+ Z+ AVGP)	

Current	state	 Row	evaluated	 Event	 Event	met	 New	state	

0	 2	 strt	 Y	 1	

•  Start	of	paEern	evaluaSon	
–  Strt	event	true	for	row	2	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

0	Start	 State	1	
(strt)	

State	3	
(y)	

State	2	
(x)	

State	4	
(w)	

x	 y	

w	

x	strt	

y	
State	5	

(z)	
State	6	
(avgp)	

z	

avgp	

w	

z	

Different	paEern	match	due	to	non-determinisSc	state	

44	

(STRT X+ Y+ W+ Z+ AVGP)	

Current	state	 Row	evaluated	 Event	 Event	met	 New	state	

0	 2	 strt	 Y	 1	

1	 3	 X		 Y	 2	

•  EvaluaSon	row	3	
–  Event	x	true	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

0	Start	 State	1	
(strt)	

State	3	
(y)	

State	2	
(x)	

State	4	
(w)	

x	 y	

w	

x	strt	

y	
State	5	

(z)	
State	6	
(avgp)	

z	

avgp	

w	

z	

Different	paEern	match	due	to	non-determinisSc	state	

45	

(STRT X+ Y+ W+ Z+ AVGP)	

Current	state	 Row	evaluated	 Event	 Event	met	 New	state	

0	 2	 strt	 Y	 1	

1	 3	 X		 Y	 2	

2	 4	 X	 Y	 2	

•  EvaluaSon	row	4 		
–  Event	X	greedy,	considered	before	Y,	true	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

0	Start	 State	1	
(strt)	

State	3	
(y)	

State	2	
(x)	

State	4	
(w)	

x	 y	

w	

x	strt	

y	
State	5	

(z)	
State	6	
(avgp)	

z	

avgp	

w	

z	

Different	paEern	match	due	to	non-determinisSc	state	

46	

(STRT X+ Y+ W+ Z+ AVGP)	

Current	state	 Row	evaluated	 Event	 Event	met	 New	state	

0	 2	 strt	 Y	 1	

1	 3	 X		 Y	 2	

2	 4	 X	 Y	 2	

2	 5	 X	 Y	 2	

•  EvaluaSon	row	5 		
–  Event	X	greedy,	considered	before	Y,	true	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

0	Start	 State	1	
(strt)	

State	3	
(y)	

State	2	
(x)	

State	4	
(w)	

x	 y	

w	

x	strt	

y	
State	5	

(z)	
State	6	
(avgp)	

z	

avgp	

w	

z	

Different	paEern	match	due	to	non-determinisSc	state	

47	

(STRT X+ Y+ W+ Z+ AVGP)	

Current	state	 Row	evaluated	 Event	 Event	met	 New	state	

0	 2	 strt	 Y	 1	

1	 3	 X		 Y	 2	

2	 4	 X	 Y	 2	

2	 5	 X	 Y	 2	

2	 6	 X	 N	 2	

2	 6	 Y	 Y	 3	

•  EvaluaSon	row	6 		
–  Event	X	greedy,	considered	before	Y,	false	
–  Event	Y	considered,	true	

…	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

0	Start	 State	1	
(strt)	

State	3	
(y)	

State	2	
(x)	

State	4	
(w)	

x	 y	

w	

x	strt	

y	
State	5	

(z)	
State	6	
(avgp)	

z	

avgp	

w	

z	

Different	paEern	match	due	to	non-determinisSc	state	

48	

(STRT X+ Y+ W+ Z+ AVGP)	

Current	state	 Row	evaluated	 Event	 Event	met	 New	state	

0	 2	 strt	 Y	 1	

1	 3	 X		 Y	 2	

2	 4	 X	 Y	 2	

2	 5	 X	 Y	 2	

2	 6	 X	 N	 2	

2	 6	 Y	 Y	 3	

3	 7	 Y	 N	 3	

3	 7	 W	 Y	 4	

4	 8	 W	 N	 4	

4	 8	 Z	 Y	 5	

5	 9	 Z	 N	 5	

5	 9	 Avgp	(2	–	8)	 N	 FAIL	

•  Event	Z	false	for	row	9,	evaluaSon	of	
event	AVGP	for	rows	2	–	8	
–  Event	AVGP	is	false,	paGern	match	FAIL	

–  Backtracking	takes	place	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

0	Start	 State	1	
(strt)	

State	3	
(y)	

State	2	
(x)	

State	4	
(w)	

x	 y	

w	

x	strt	

y	
State	5	

(z)	
State	6	
(avgp)	

z	

avgp	

w	

z	

Different	paEern	match	due	to	non-determinisSc	state	

49	

(STRT X+ Y+ W+ Z+ AVGP)	

Current	state	 Row	evaluated	 Event	 Event	met	 New	state	

0	 2	 strt	 Y	 1	

1	 3	 X		 Y	 2	

2	 4	 X	 Y	 2	

2	 5	 X	 IGNORED	 2	

2	 5	 Y	 N	 FAIL	

•  Backtracking:	find	first	row	with	
possible	alternaSve	event	
–  Row	5	re-evaluated	with	event	Y,	false	
–  PaEern	FAIL,	more	backtracking	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

0	Start	 State	1	
(strt)	

State	3	
(y)	

State	2	
(x)	

State	4	
(w)	

x	 y	

w	

x	strt	

y	
State	5	

(z)	
State	6	
(avgp)	

z	

avgp	

w	

z	

Different	paEern	match	due	to	non-determinisSc	state	

50	

(STRT X+ Y+ W+ Z+ AVGP)	

Current	state	 Row	evaluated	 Event	 Event	met	 New	state	

0	 2	 strt	 Y	 1	

1	 3	 X		 Y	 2	

2	 4	 X	 IGNORED	 2	

2	 4	 Y	 N	 FAIL	

•  More	backtracking	
–  Row	4	re-evaluated	with	event	Y,	false	
–  PaEern	FAIL,	more	backtracking		

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Different	paEern	match	due	to	non-determinisSc	state	

51	

(STRT X+ Y+ W+ Z+ AVGP)	

•  Backtracking	fails	
–  No	more	alternate	events	in	row	set	2	–	8	
–  PaEern	fail,	row	2	skipped	

Current	state	 Row	evaluated	 Event	 Event	met	 New	state	

0	 2	 Row	skipped	

0	 3	 Strt	 Y	 1	

0	Start	 State	1	
(strt)	

State	3	
(y)	

State	2	
(x)	

State	4	
(w)	

x	 y	

w	

x	strt	

y	
State	5	

(z)	
State	6	
(avgp)	

z	

avgp	

w	

z	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Backtracking	
• Non-determinisSc	state	machine	captures	state	at	each	row	at	paEern	
evaluaSon	Sme	and	pushes	details	into	stack	
– Backtracking	simply	walks	back	through	the	stack,	looking	for	possible	re-evaluaSon	

• Moving	forward	we	put	more	and	more	rows	into	the	stack	
– Repeated	within	each	parSSon		

• Depending	on	complexity	of	paEern	this	can	become	memory-consuming	
– Chance	to	run	out	of	PGA	for	large,	complex	paEern	matching	statements	
– Circumvent	such	situaSons	by	allocaSng	more	memory	

52	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Summary	

SQL	PaEern	Matching	is	a	powerful	tool	

Easy	data	analysis	out-of-the-box	with	built-in	measures	
MATCH_NUMBER	and	CLASSIFIER	

The	importance	to	understand	greedy	and	reluctant	
quanSfiers	

How	do	state	machines	and	back	tracking	work	

Go	and	use	SQL	PaGern	Matching	to	your	advantage!	

✔	

✔	

✔	

✔	

✔	

54	

