DEEP DIVEINTO 12c
MATCHRRECOGNIZE

Getting inside the ! pattern

matching proces

S 9
O
O

Data Warehousi
\

ORACLE

Agenda

E» SQL Pattern Matching — quick recap

E» Using built-in measures to understand your pattern
E) Greedy vs. reluctant quantifiers

E» Understanding state machines

B» Backtracking

D Summary

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

SQL Pattern Matching

Quick recap i

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Pattern matching in sequences of rows
The Challenge — a real-world business problem

“ ... detect if a phone card went from phone A to phone B to phone C... and

back to phone A within ‘N°‘ hours...

11 ”

... and detect if pattern above occurs at least ‘N’ times within 7 days ...

* Currently pattern recognition in SQL is difficult

— Use multiple self joins (not good for *)

 Tl.handset_id <> T2.handset_id <>T3.handset_id AND.... T1.sim_id= ‘X’ AND T2.time BETWEEN
T1.time and Tl.time+2....

— Use recursive query for * (WITH clause, CONNECT BY)
— Use Window Functions (likely with multiple query blocks)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Sample Pattern Matching SQL

Finding V shaped patterns in a ticker stream

SELECT symbol, tstamp, price,
first down, first price, last up, last price
FROM ticker MATCH RECOGNIZE (/
PARTITION BY symbol ORDER BY tstamp
MEASURES FIRST(strt.tstamp) AS first down,
FIRST(strt.price) as first price,
FINAL LAST(up.tstamp) AS last up,
FINAL LAST(up.price) as last price
ALL ROWS PER MATCH
PATTERN (strt down+ up+)
DEFINE
down AS (price <= PREV(price)),
up AS (price >= PREV(price))

)
ORDER BY symbol, tstamp;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Ordered and partitioned stream
of rows

Sample Pattern Matching SQL

Finding V shaped patterns in a ticker stream

SELECT symbol, tstamp, price,
first down, first price, last up, last price
FROM ticker MATCH RECOGNIZE (/
PARTITION BY symbol ORDER BY tstamp
MEASURES FIRST(strt.tstamp) AS first down,
FIRST(strt.price) as first price,
FINAL LAST(up.tstamp) AS last up,
FINAL LAST(up.price) as last price
ALL ROWS PER MATCH
PATTERN (strt down+ up+) ——M8Mm
DEFINE
down AS (price <= PREV(price)),
up AS (price >= PREV(price))

)
ORDER BY symbol, tstamp;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Ordered and partitioned stream
of rows

Variable names and operators

Sample Pattern Matching SQL

Finding V shaped patterns in a ticker stream

SELECT symbol, tstamp, price,
first down, first price, last up, last price

FROM ticker MATCH RECOGNIZE (/ Ordered and partitioned stream
PARTITION BY symbol ORDER BY tstamp of rows

MEASURES FIRST(strt.tstamp) AS first down,
FIRST(strt.price) as first price,
FINAL LAST(up.tstamp) AS last up,
FINAL LAST(up.price) as last price
ALL ROWS PER MATCH

PATTERN (strt down+ up+) —M8M
DEFINE

Variable names and operators

down AS (price <= PREV(price)),

up AS (price >= PREV(price)) G e e

)

ORDER BY symbol, tstamp;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 7

Sample Pattern Matching SQL

Finding V shaped patterns in a ticker stream

SELECT symbol, tstamp, price,
first down, first price, last up, last price

FROM ticker MATCH RECOGNIZE (/ Ordered and partitioned stream
PARTITION BY symbol ORDER BY tstamp of rows

MEASURES FIRST(strt.tstamp) AS first down,

FIRST(strt.price) as first price,
FINAL LAST(up.tstamp) AS last_up, Measures

FINAL LAST(up.price) as last price
ALL ROWS PER MATCH

PATTERN (strt down+ up+) —M8M
DEFINE

Variable names and operators

down AS (price <= PREV(price)),

up AS (price >= PREV(price)) Variable definition

)

ORDER BY symbol, tstamp;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 8

Consistent results
* ORDER BY clause is optional in syntax (and ANSI proposal)

* My data is already sorted so | don’t need ORDER BY - correct?
— Tempting to ignore ORDER BY clause and assume data will be correctly ordered
— Without ORDER BY, consistent results are not guaranteed!

* Always include ORDER BY clause

— If order of two rows in a partition is not determined by ORDER BY results (non-unique
order by key), the result will be non-deterministic

— If you have non unique order by keys within partition, consider adding additional
order by columns to make order by unique and deterministic

— If Oracle can suppress the order by then it will do so!

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Built-in Measures
Using built-in dezgging tools to help you

understand the pattern matching process

SR
ORACI—E Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Two key built-in measures
1. MATCH_NUMBER()

— Returns an integer to show which rows are members of which match
— Assigns the same number to each row of a specific match

— For instance, all the rows in the first match found in a row pattern partition are
assigned the match number value of 1

— Note that match numbering starts over again at 1 in each row pattern partition

2. CLASSIFIER()

— Shows which rows map to which variable

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

11

Example code using two built-in measures
Finding V shaped patterns in a ticker stream

SELECT symbol, tstamp, price, mn, pattern,
first down, first price, last up, last price
FROM ticker MATCH RECOGNIZE (
PARTITION BY symbol ORDER BY tstamp
MEASURES MATCH_NUMBER() AS mn,
CLASSIFIER() as pattern,
FIRST(strt.tstamp) AS first down,
FIRST(strt.price) as first price,
FINAL LAST(up.tstamp) AS last up,
FINAL LAST(up.price) as last price
ALL ROWS PER MATCH
PATTERN (strt down+ up+)
DEFINE
down AS (price <= PREV(price)),
up AS (price >= PREV(price))
)
ORDER BY symbol, tstamp;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

12

1. MATCH_NUMBER()

* MATCH_NUMBER assigns the same
number to each row of a specific
match

— First match of complete pattern found
in a partition assigned match_number()
value of 1

— Next match gets value of 2, etc.

* Note that match numbering starts
over again at 1 in each row pattern
partition

PARTITION

PARTITION

1

2

{} SYMBOL | {} TSTAMP |{} PRICE |{} MN |{} PATTERN
1ACME 05-APR-11 25 TRT |
2 ACME 06-APR-11 12 | 1pomw |
3ACME @7-APR-11 15 | 1}p
4 ACME 08-APR-11 20 | 1)pp §
SACME 09-APR-11 24 | 1}p
6 ACME 10-APR-11 25 | 1}p :
7AME 11-APR-11 19 | 2FTRT |
8 ACME 12-APR-11 15 | 2powmn
9 ACME 13-APR-11 25 | 2| |

10 ACME 14-APR-11 25 | 2]p
11 ACME 15-APR-11 14 STRT
12 ACME 16-APR-11 12 | 3powN
13 ACME ~ 17-APR-11 14 P i
. 14ACME 18-APR-11 24 P |
15 GLOBEX 05-APR-11 25 STRT
16 GLOBEX 06-APR-11 12 | 1pOWN

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

2. CLASSIFIER()

* CLASSIFIER() shows which rows map to
which variable: STRT, DOWN or UP

* In this example,
—rows 1,7,11, 15 map to variable STRT

—Rows 2, 8,12, 16 map to variable DOWN
—remaining rows map to variable UP

* Note: CLASSIFER() cannot be used with
ONE ROW PER MATCH

— Not applicable to aggregated result

i} SYMBOL |{} TSTAMP |{} PRICE

1 ACME 05-APR-11 25

2 ACME 06-APR-11 12

3 ACME 07-APR-11 15

4 ACME 08-APR-11 20

5 ACME 09-APR-11 24

6 ACME 10-APR-11 25

7 ACME 11-APR-11 19

8 ACME 12-APR-11 15

9 ACME 13-APR-11 25

10 ACME 14-APR-11 25
11 ACME 15-APR-11 14
12 ACME 16-APR-11 12
13 ACME 17-APR-11 14
14 ACME 18-APR-11 24
15 GLOBEX 05-APR-11 25
16 GLOBEX 06-APR-11 12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

{} MN |{} PATTERN

LA

14

Greedy Quantifiers

Using greedy and reluctant quantifiers in your
pattern definition

J

ORACLE

Defining PATTERNS

* PATTERN component is used to specify regular expressions

* Regular expression is built from variable names and operators
— Operators can be concatenation, grouping, alternation, permutes, quantifiers, ...
— A large library of built-on quantifiers is available
— Regular expressions are amazingly powerful and deeply expressive

* What is a regular expression?

—a regular expression (sometimes called a rational expression) is a sequence of
characters that define a search pattern, mainly for use in pattern matching with
strings, or string matching, i.e. "find and replace” - like operations

Wikipedia: https://en.wikipedia.org/wiki/Regular_expression

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 16

What is a regular expression?

* Regular expressions used to specify a set of strings (tokens and quantifiers)
required for a particular purpose

* Quantifier after a token or group specifies how often that preceding
element is allowed to occur
* Most common quantifiers are:
— Question mark ?, indicates zero or one match
— Asterisk *, indicates need for zero or more matches
— Plus sign +, indicates need for one or more matches

* Oracle's regular expressions are slightly different

— Row pattern variables are defined by Boolean conditions rather than characters or
sets of characters

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 17

Quantifiers used in PATTERN clause

* POSIX basic and extended quantifiers:

—+

_?
—{n}
_{n’}
_{n’ m}

_{’ m}

0 or more matches

1 or more matches

0 or 1 match

exactly n matches

n or more matches

at least n but not more than m (inclusive) matches
at most m (inclusive) matches

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

How to use quantifiers

* The following are examples of using quantifiers:

—A” matches 0 or more iterations of variable A
—A{3,6} matches 3 to 6 iterations of variable A
—A{,4} matches 0 to 4 iterations of variable A

* Ais defined in the DEFINE component of the MATCH_RECOGNIZE
clause

—Forexample: A AS (price <= PREV(price))

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Greedy and reluctant quantifiers

* Pattern quantifiers are referred to as greedy

— Attempt to match as many instances as possible of the regular expression on
which they are applied

* Reluctant quantifiers use a question mark ? as additional suffix

— Attempt to match as few instances as possible of the regular expression on
which they are applied

« Convert greedy to reluctant quantifier by adding additional “?”
—Examples: ?? or *? or +? or {n, m }?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Example — using greedy quantifiers

Finding V shaped patterns in a ticker stream using plus-sign greedy quantifier

SELECT symbol, tstamp, price, mn, pattern,
first down, first price, last up, last price
FROM ticker MATCH RECOGNIZE (
PARTITION BY symbol ORDER BY tstamp
MEASURES MATCH NUMBER() AS mn,
CLASSTIFIER() as pattern,
FIRST(strt.tstamp) AS first down,
FIRST(strt.price) as first price,
LAST(up.tstamp) AS last up,
LAST(up.price) as last price
ALL ROWS PER MATCH
PATTERN (strt down+ up+)ec

Using the “+” greedy
guantifier

DEFINE
down AS (price <= PREV(price)),
up AS (price >= PREV(price))
)
WHERE symbol = 'ACME’
ORDER BY symbol, tstamp;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

21

Using greedy quantifiers

Matching to variable DOWN takes precedence over UP on row 13

30
25
20
15
10

0

{ SYMBOL |{} TSTAMP |{} PRICE |{} MN |{} PATTERN |{} FIRST_DOWN |{} FIRST_PRICE |{} LAST_UP |{} LAST_PRICE |

1 ACME
2 ACME
3 ACME
4 ACME
5 ACME
6 ACME
7 ACME
8 ACME
9 ACME
10 ACME
11 ACME
12 ACME
13 ACME
14 ACME

05-APR-11
06-APR-11
07-APR-11
08-APR-11
09-APR-11
10-APR-11
11-APR-11
12-APR-11
13-APR-11
14-APR-11
15-APR-11
16-APR-11
17-APR-11
18-APR-11

25
12
15
20
24
25
19
15
25
25
14
14
14
24

1STRT
1 DOWN
1UP
1up
1UP
1UP
2 STRT
2 DOWN
2UP
2UP
3 STRT
3 DOWN
3 DOWN
3UP

05-APR-11
05-APR-11
05-APR-11
05-APR-11
05-APR-11
05-APR-11
11-APR-11
11-APR-11
11-APR-11
11-APR-11
15-APR-11
15-APR-11

15-APR-11

25 (null)
25 (null)

25 07-APR-11
25 08-APR-11
25 09-APR-11
25 10-APR-11

19 (null)
19 (null)

19 13-APR-11
19 14-APR-11

14 (null)
14 (null)

14 18-APR-11

(null)
(null)
15
20
24
25
(null)
(null)
25
25
(null)
(null)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Conflict: horizontal area
could be mapped to
DOWN or UP

Result: Greedy DOWN
matches as many
instances possible to
DOWN before matching to
up

22

Example - using a reluctant quantifier

Finding V shaped patterns in a ticker stream using question-mark reluctant quantifier

SELECT symbol, tstamp, price, mn, pattern, first down, first price, last up,

last price
FROM ticker MATCH RECOGNIZE (
PARTITION BY symbol ORDER BY tstamp
MEASURES MATCH NUMBER() AS mn,
CLASSIFIER() as pattern,
FIRST(strt.tstamp) AS first down,
FIRST(strt.price) as first price,
LAST(up.tstamp) AS last up,
LAST(up.price) as last price
ALL ROWS PER MATCH

What happens if DOWN
uses ? to make quantifier
‘reluctant’ ...

PATTERN (strt down+? up+) <
DEFINE
down AS (price <= PREV(price)),
up AS (price >= PREV(price))
)
WHERE symbol = 'ACME’
ORDER BY symbol, tstamp;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

23

Using a reluctant quantifiers

30
25
20
15
10

Matching to variable UP takes precedence over DOWN on row 13

0

{t symoL |{ TsTAMP |{ PRICE |{} MN |{} PATTERN |{} FIRST_DOWN |{} FIRST_PRICE |{} LAST_UP |{} LAST_PRICE |

1 ACME
2 ACME
3 ACME
4 ACME
5 ACME
6 ACME
7 ACME
8 ACME
9 ACME
10 ACME
11 ACME
12 ACME
13 ACME
14 ACME

05-APR-11
06-APR-11
07-APR-11
08-APR-11
09-APR-11
10-APR-11
11-APR-11
12-APR-11
13-APR-11
14-APR-11
15-APR-11
16-APR-11
17-APR-11
18-APR-11

25
12
15
20
24
25
19
15
25
25
14
14
14
24

1STRT
1 DOWN
1upP
1up
1UP
1upP
2STRT
2 DOWN
2UP
2UP
3 STRT
3 DOWN
3upP
3UP

05-APR-11
05-APR-11
05-APR-11
05-APR-11
05-APR-11
05-APR-11
11-APR-11
11-APR-11
11-APR-11
11-APR-11
15-APR-11
15-APR-11

15-APR-11

25 (null)
25 (null)

25 07-APR-11
25 08-APR-11
25 09-APR-11
25 10-APR-11

19 (null)
19 (null)

19 13-APR-11
19 14-APR-11

14 (null)
14 (null)

14 18-APR-11

(null)
(null)
15
20
24
25
(null)
(null)
25
25
(null)
(null)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Records matches to UP
before considering
reluctant DOWN again after
having found one match of
DOWN already (pattern
satisfied)

24

Understanding State
Machines

..and why you heed to care about them!

J

ORACLE

MATCH_RECOGNIZE and State Machines

* Compilation phase generates a finite state machine FSM

A finite-state machine (FSM) or finite-state automaton (plural: automata), or simply a
state machine, is a mathematical model of computation used to design both computer
programs and sequential logic circuits. It is conceived as an abstract machine that can
be in one of a finite number of states. The machine is in only one state at a time; the
state it is in at any given time is called the current state. It can change from one state to
another when initiated by a triggering event or condition; this is called a transition.

A particular FSM is defined by a list of its states, and the triggering condition for each
transition.

Reference from wikipedia - https://en.wikipedia.org/wiki/Finite-state machine

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 26

Turnstile State Machine

* Has two states: Locked and Unlocked

* Two events affect its state:
— Putting a coin in the slot (coin)
— Pushing the arm (push)

* Locked state, pushing on the arm has no effect

* Putting a coin in shifts the state from Locked to
Unlocked

— Putting additional coins in has no effect;

* Pushing through the arms, giving a push input,
shifts the state back to Locked

Images courtesy of wikipedia Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

27

MATCH_RECOGNIZE and State Machines

 State machine is constructed using information in PATTERN and DEFINE components

 State machine represented by a directed graph called a state diagram

— Each state is represented by a node (circle)

— Edges (arrows) show transitions from one state to another.
* Labeled with the event (condition) that triggers transition.

— Events (conditions) that don't cause a change of state are represented by a circular arrow returning to
the original state.

* Graph repre ion of (STRT DOWN+? UP+ FLAT+)
ﬁ / up flat

start @E—" down State 2 up State 4
(down) flat (flat)
\ dowr

— Note the precedence of UP over DOWN for reluctant qua

Precedence is to read from top ->down

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

28

MATCH_RECOGNIZE plans based on State Machines
* Compilation phase of MATCH_RECOGNIZE generates a finite state machine

* Details of PATTERN component determine if state machine is:

1. Deterministic Finite Auto (DFA)
* Each of its transitions is uniquely determined by its source state and event
* DFA uses an efficient algorithm without backtracking, runs in linear time
2. Nondeterministic Finite Auto (NFA)

* Next state of an NFA depends not only on the current event, but also possibly on an arbitrary
number of subsequent events

* NFA implements back tracking + other optimization techniques like memoization*

* https://en.wikipedia.org/wiki/Memoization

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 29

MATCH_RECOGNIZE plans based on State Machines

Explain plan indicates which algorithm is used:

AY

ELECT STATEMENT = SELECT STATEMENT

ORT (ORDER BY = SORT (ORDER BY

=@ MATCH RECOGNIZE (SORT DETERMINISTIC FINITE AUTO)

A L t

= MATCH RECOGNIZE (SORT)
TABLE ACCESS (FULL)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 30

New keywords in explain plans

* Four new key words relating to pattern matching that will appear in your
explain plan:

1. MATCH RECOGNIZE

2. DETERMINISTIC FINITE AUTO
3. SORT

.. BUFFER

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Optimizer keywords

* SORT — input data needs to be sorted before executing the state machine
constructed for pattern recognition

* BUFFER — rows of input table expression come in the order required by
MATCH_RECOGNIZE

— Sort is used during pattern recognition just for buffering purpose

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

B82)

Deterministic state machine
No backtracking and runs in linear time

SELECT *
FROM Ticker
MATCH RECOGNIZE (
PARTITION BY symbol ORDER BY tstamp
MEASURES strt.tstamp AS start tstamp,
LAST (down.tstamp) AS b tstamp,
LAST(up.tstamp) AS e tstamp
ONE ROW PER MATCH
AFTER MATCH SKIP TO LAST y
PATTERN (strt down up)
DEFINE
down AS price < PREV(price),
up AS price > PREV(price)
) WHERE symbol= ‘ACME’ ;

AY

@Scn’pt Output X |ﬁExplain Plan X lbouery Result X ['Autottace XI
S0L | 0575 seconds

OPERATION

| &-#) SELECT STATEMENT
-4 SORT (ORDER BY)
=Bl viEw
- @ MATCH RECOGNIZE (SORT DETERMINISTIC FINITE AUTO)
=-FH TABLE ACCESS (FULL)
=-O¥ Filter Predicates
.. SYMBOL='ACME'

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 33

Deterministic state machine
No backtracking and runs in linear time

SELECT *
FROM Ticker
MATCH RECOGNIZE (
PARTITION BY symbol ORDER BY tstamp
MEASURES strt.tstamp AS start tstamp,
LAST (down.tstamp) AS b tstamp,
LAST(up.tstamp) AS e tstamp
ONE ROW PER MATCH
PATTERN (strt down up*)

DEFINE
down AS price < PREV(price),
up AS price > PREV(price)

) WHERE symbol= ‘ACME’ ;

AY

@Scn’pt Output X |ﬁExplain Plan X lbouery Result X ['Autottace XI
S0L | 0575 seconds

OPERATION

| &-#) SELECT STATEMENT
-4 SORT (ORDER BY)
=Bl viEw
- @ MATCH RECOGNIZE (SORT DETERMINISTIC FINITE AUTO)
=-FH TABLE ACCESS (FULL)
=-O¥ Filter Predicates
.. SYMBOL='ACME'

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 34

Non-deterministic state machine
Determinism unknown, backtracking in place

SELECT *
FROM Ticker
MATCH RECOGNIZE (
PARTITION BY symbol ORDER BY tstamp
MEASURES strt.tstamp AS start tstamp,
LAST(down.tstamp) AS b tstamp, M SOL | 0.202 seconds

LAST(up.tstamp) AS e tstamp OPERATION
=@ SELECT STATEMENT

. 4
@Scﬁpt Output X Ib Query Result X |EExplain Plan X [-Autotrace

ONE ROW PER MATCH '
AFTER MATCH SKIP TO LAST up E’""E} ‘f?.RTv:s;DER BY)
PATTERN (strt down* up+) =@ MATCH RECOGNIZE (SORT)

EE TABLE ACCESS (FULL)
EJO? Filter Predicates
o SYMBEOL='ACME'

DEFINE
down AS price <= PREV(price),

up AS price >= PREV(price)
) WHERE symbol= ‘ACME’ ;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 35

Backtracking

ORACLE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Setting the scene — searching for ‘W’ patterns

SELECT symbol, mn, tstamp, pattern, price,
first price, first price, last price
FROM ticker MATCH RECOGNIZE (
PARTITION BY symbol ORDER BY tstamp
MEASURES MATCH NUMBER() AS mn,
CLASSIFIER() AS pattern,
FIRST(strt.tstamp) AS first x,
FIRST(strt.price) AS first price,
LAST(z.tstamp) AS last z,
LAST(z.price) AS last price
ALL ROWS PER MATCH WITH UNMATCHED ROWS
PATTERN (strt x+ y+ w+ z+)

DEFINE x AS (price < PREV(price)),
y AS (price > PREV(price)),
w AS (price < PREV(price)),
z AS (price > PREV(price)))

WHERE symbol "OSCORP ' ;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

37

Results for W-pattern search

{ symBOL | MN |{ TSTAMP |{} PATTERN |{} PRICE |{} FIRST_PRICE |{} LAST_PRICE |

1 OSCORP
2 OSCORP
3 OSCORP
4 OSCORP
5 OSCORP
6 OSCORP
7 OSCORP
8 OSCORP
9 OSCORP
10 OSCORP
11 OSCORP
12 OSCORP
13 OSCORP
14 OSCORP
15 OSCORP
16 OSCORP
17 OSCORP
18 OSCORP
19 OSCORP

(null) 01-APR-
102-APR-
103-APR-
104-APR-
105-APR-
1 06-APR-
107-APR-
108-APR-

(null) 09-APR-

(null) 10-APR-
2 11-APR-
2 12-APR-
2 13-APR-
2 14-APR-
2 15-APR-
2 16-APR-

(null) 17-APR-

(null) 18-APR-

(null) 19-APR-

11 (null)
11 STRT
11 X

11 X

11 X

11Y

11w

117

11 (null)
11 (null)
11 STRT
11 X

11 X

11Y

11w

1127

11 (null)
11 (null)
11 (null)

22
22
19
18
17
20
17
20

16
15
15
12

11
15
12
16
14
12
11

(null)
22
22
22
22
22
22
22
(null)
(null)

GELEGEGEG

(null)
(null)
(null)

(null)
(null)
(null)
(null)
(null)
(null)
(null)

20
(null)
(null)
(null)
(null)
(null)
(null)
(null)

16
(null)
(null)
(null)

* Points to note:

* Line 1 is not matched because
the 2"9 element of our pattern,
the first down test X, fails since
price on line 1 is the same as
price on line 2

* Pattern STRT is matched at line 2
— Matching continues until line 8
— Line 8 completes the first “W”

* Non-deterministic state machine
— Backtracking will be used

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 38

Extending the pattern to test final price vs. initial price

SELECT symbol, mn, tstamp, pattern,
price, first price, last price
FROM ticker MATCH RECOGNIZE (
PARTITION BY symbol ORDER BY tstamp
MEASURES MATCH NUMBER() AS mn,
FIRST(strt.tstamp) AS first x,
FIRST(strt.price) AS first price,
LAST(z.tstamp) AS last z,
last(z.price) AS last price,
classifier() AS pattern
ALLL. ROWS PER MATCH WITH UNMATCHED ROWS
PATTERN (STRT X+ Y+ W+ Z+ AVGP)
DEFINE X AS (price < PREV(price)),
Y AS (price > PREV(price)),
W AS (price < PREV(price)),
Z AS (price > PREV(price)),
AVGP AS (last(z.price) < strt.price*1l.5)) ;

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

B89

Comparing results of first and second statement
What’s going on ?

{ symBoL |{ N |{} TSTAMP |{} PATTERN |{} PRICE |{} FIRST_PRICE |{} LAST_PRICE | {t symeoL | MN |{ TSTAMP |{} PATTERN |{} PRICE |{} FIRST_PRICE |{} LAST_PRICE |
1 OSCORP (null) 01-APR-11 (null) 22 (null) (null) 1 0SCORP (null) 01-APR-11 (null) 22 (null) (null)
2 0SCORP 102-APR-11 STRT 22 22 (null) 2 0SCORP (null) 02-APR-11 (null) 22 (null) (null)
3 OO TG APR- 11X 5 PR Ty
4 0SCORP 104-APR-11 X 18 22 (null) 4 05CORP 04-APR- 11X 3 § nu
5 0SCORP 105-APR-11 X 17 22 (null) 5 OSCORP 105-APR-11 X 17 19 (null)
6 OSCORP 106-APR-11Y 20 22 (null) 6 0SCORP 106-APR-11Y 20 19 (null)
7 0SCORP 107-APR-11 W 17 22 (null) 7 OSCORP 107-APR-11W 17 19 (null)
8 OSCORP 108-APR-11 Z 20 2 20 8 OSCORP 108-APR-11 Z 20 19 20
9 0SCORP (null) @9-APR-11 (null) 16 (null) (null) 9 0SCORP 109-APR-11 AVGP 16 19 20
10 0SCORP (null) 10-APR-11 (null) 15 (null) (null) 10 0SCORP (null) 10-APR-11 (null) 15 (null) (null)
11 0SCORP 2 11-APR-11 STRT 15 15 (null) 11 0SCORP 2 11-APR-11 STRT 15 15 (null)
12 0SCORP 2 12-APR-11 X 12 15 (null) 12 0SCORP 212-APR-11 X 12 15 (null)
13 0SCORP 2 13-APR-11 X 11 15 (null) 13 OSCORP 2 13-APR-11 X 11 15 (null)
14 0SCORP 2 14-APR-11Y 15 15 (null) 14 0SCORP 2 14-APR-11Y 5 15 (null)
15 0SCORP 2 15-APR-11 W 12 15 (null) 15 OSCORP 215-APR-11 W 12 15 (null)
16 OSCORP 216-APR-11Z 16 15 16 16 OSCORP 216-APR-11 Z 16 5 16
17 0SCORP (null) 17-APR-11 (null) 14 (null) (null) 17]05CORP 2]117-APR-11/AVGP 1 5 16
18 0SCORP (null) 18-APR-11 (null) 12 (null) (null) 18 0SCORP (null) 18-APR-11 (null) 12 (null) (null)
19 0SCORP (null) 19-APR-11 (null) 11 (null) (null) 19/05CORP | (null)|19-APR-11)(null) N (null) (null)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Comparing results of first and second statement

{i symBoL | MN |{: TSTAMP |{} PATTERN |{ PRICE |{} FIRST_PRICE |{} LAST_PRICE |

Notable differences

1 OSCORP
2 OSCORP
3 OSCORP
4 OSCORP
5 OSCORP
6 OSCORP
7 OSCORP
8 OSCORP
9 OSCORP
10 OSCORP
11 OSCORP
12 OSCORP
13 OSCORP
14 OSCORP
15 OSCORP
16 OSCORP
17 OSCORP
18 OSCORP
19 OSCORP

(null) ©1-APR-
(null) 02-APR-
103-APR-
104-APR-
105-APR-
1 06-APR-
107-APR-
108-APR-
109-APR-
(null) 10-APR-
2 11-APR-
2 12-APR-
2 13-APR-
2 14-APR-
2 15-APR-
2 16-APR-
2 17-APR-
(null) 18-APR-
(null) 19-APR-

11 (null)
11 (null)
11 STRT
11 X

11 X

11Y

11w

117

11 AVGP
11 (null)
11 STRT
11 X

11 X

11Y

11w

112

11 AVGP
11 (null)
11 (null)

22
22
19
18
17
20
17
20
16
15
15
12
11
15
12
16
14
12
11

(null)
(null)
19
19
19
19
19
19
19
(null)

GEELEGELGG

(null)
(null)

(null)

(null) .
mw ° Row 2 is not matched anymore

oy to always-true event STRT

o« STRT variable now matched at

20 row 3.

20

(null) .
oy ° W-pattern still ends at row 8

(null)

m) * Row 9 is now mapped to variable
(null)

(L) AVGP

16

. *Backtracking in action

(null)

(=]

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 41

Different pattern match due to non-deterministic state

(STRT X+ Y+ W+ Z+ AVGP)

{ sYymoL | MN |{ TSTAMP |{} PATTERN |{} PRICE |

1 OSCORP
2 OSCORP
3 OSCORP
4 0SCORP
5 OSCORP
6 OSCORP
7 OSCORP
8 OSCORP
9 OSCORP

(null) ©1-APR-
102-APR-
103-APR-
104-APR-
105-APR-
1 06-APR-
107-APR-
108-APR-

(null) 09-APR-

11 (null)
11 STRT
11 X

11 X

11 X

11Y

11 W

117

11 (null)

22
22
19
18
17
20
17
20
16

% ‘) [y ([
Yy w z avgp

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

State 6
(avep)

42

Different pattern match due to non-deterministic state

(STRT X+ Y+ W+ Z+ AVGP)

%) [0

{ sYymoL | MN |{ TSTAMP |{} PATTERN |{} PRICE |

State 6
(avgp)

1 OSCORP (null) 81-APR-11 (null)

2 OSCORP 102-APR-11 STRT
3 OSCORP 103-APR-11 X
4 0SCORP 104-APR-11 X
5 OSCORP 105-APR-11 X
6 OSCORP 106-APR-11Y
7 OSCORP 107-APR-11W
8 OSCORP 108-APR-11 7

9 OSCORP (null) 09-APR-11 (null)

 Start of pattern evaluation

— Strt event true for row 2

22
22
19
18
17
20
17
20
16

Current state Row evaluated Event

Event met

New state

0

2 strt

Y

1

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

43

Different pattern match due to non-deterministic state
(STRT X+ Y+ W+ Z+ AVGP)
9 ®i [

State 6
avgp (avgp)

{} SYMBOL IO} MN |{} TSTAMP |{} PATTERN ‘i} PRICE l Current state Row evaluated Event Event met New state
1 OSCORP (null) 01-APR-11 (null) 22 0) i v 1
2 0SCORP 102-APR-11 STRT 22 3 X v 5
3 OSCORP 103-APR-11 X 19
4 OSCORP 104-APR-11 X 18
5 OSCORP 105-APR-11 X 17
& OSCORP 106-APR-11Y 20
7 0SCORP 107-APR-11 W 17
8 OSCORP 108-APR-117 20
9 0SCORP (null) ©9-APR-11 (null) 16

* Evaluation row 3

— Event x true

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

44

Different pattern match due to non-deterministic state
(STRT X+ Y+ W+ Z+ AVGP)
& - 'S 9

start (D' State 1 X State 2 State 3 j State 6
(strt) (x) Y (y) w z avgp (avgp)

{} SYMBOL IO} MN |{} TSTAMP |{} PATTERN ‘i} PRICE l Current state Row evaluated Event Event met New state

1 OSCORP (null) 01-APR-11 (null) 22 0) i v 1
2 OSCORP 102-APR-11 STRT 22

1 3 X Y 2
3 0SCORP 103-APR-11 X 19

2 4 X Y 2
4 OSCORP 104-APR-11 X 18
5 OSCORP 105-APR-11 X 17
& OSCORP 106-APR-11Y 20
7 0SCORP 107-APR-11 W 17
8 OSCORP 108-APR-117 20
9 0SCORP (null) ©9-APR-11 (null) 16

* Evaluation row 4

— Event X greedy, considered before Y, true

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Different pattern match due to non-deterministic state
(STRT X+ Y+ W+ Z+ AVGP)
& - 'S 9

start (D' State 1 X State 2 State 3 j State 6
(strt) (x) Y (y) w z avgp (avgp)

{} SYMBOL IO} MN |{} TSTAMP |{} PATTERN ‘i} PRICE l Current state Row evaluated Event Event met New state

1 OSCORP (null) ©1-APR-11 (null) 22 0) i v 1
2 0SCORP 102-APR-11 STRT 22

1 3 X Y 2
3 0SCORP 103-APR-11 X 19

2 4 X Y 2
4 OSCORP 104-APR-11 X 18
5 0SCORP 105-APR-11 X 17 g > X Y 2
& OSCORP 106-APR-11Y 20
7 0SCORP 107-APR-11 W 17
8 OSCORP 108-APR-117 20
9 0SCORP (null) ©9-APR-11 (null) 16

* Evaluation row 5

— Event X greedy, considered before Y, true

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Different pattern match due to non-deterministic state

(STRT X+ Y+ W+ Z+ AVGP)

{ sYymoL | MN |{ TSTAMP |{} PATTERN |{} PRICE |

1 OSCORP (null) 81-APR-11 (null)

2 OSCORP 102-APR-11 STRT
3 OSCORP 103-APR-11 X
4 0SCORP 104-APR-11 X
5 0SCORP 105-APR-11 X
6 OSCORP 106-APR-11Y
7 OSCORP 107-APR-11W
8 OSCORP 108-APR-11 7

9 OSCORP (null) 09-APR-11 (null)

* Evaluation row 6

22
22
19
18
17
20
17
20
16

— Event X greedy, considered before Y, false

— Event Y considered, true

.

v/v

/j“” .

> A
@1 @ State 6
I‘ ‘ z avgp (avgp)
Current state Row evaluated Event Event met New state
0 2 strt Y 1
1 3 X Y 2
2 4 X Y 2
2 5 X Y 2
2 6 X N 2
2 6 Y Y 3
000

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

47

Different pattern match due to non-deterministic state

(STRT X+ Y+ W+ Z+ AVGP)

/]
wr State 6]
S ‘ (avep)

Current state Row evaluated Event Event met New state
- o 0 2 strt Y 1
2 OSCORP 102-APR-11 STRT
1 3 X Y 2
3 OSCORP 103-APR-11 X
2 4 X Y 2
4 OSCORP 104-APR-11 X
5 0SCORP 105-APR-11 X 2 > X Y 2
6 0SCORP 106-APR-11Y 2 6 X N 2
7 OSCORP 107-APR-11W 2 6 Y Y 3
8 OSCORP 108-APR-11 Z 3 7 Y N 3
3 7 W Y 4
* Event Z false for row 9, evaluation of 4 8 w N 4
event AVGP for rows 2 — 8 4 8 z Y 5
— Event AVGP is false, pattern match FAIL 5 9 z N 5
5 9 Avgp (2 - 8) N FAIL

— Backtracking takes place

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Different pattern match due to non-deterministic state

(STRT X+ Y+ W+ Z+ AVGP)

v/v

{ sYymoL | MN |{ TSTAMP |{} PATTERN |{} PRICE |

v/w

w ® z ang

1 OSCORP (null) 81-APR-11 (null) 22
2 OSCORP 102-APR-11 STRT 22
3 OSCORP 103-APR-11 X 19
4 OSCORP 104-APR-11 X 18
5 OSCORP 105-APR-11 X 17
6 OSCORP 106-APR-11Y 20
7 OSCORP 107-APR-11W 17
8 OSCORP 108-APR-11 7 20
9 OSCORP (null) 09-APR-11 (null) 16

* Backtracking: find first row with
possible alternative event

— Row 5 re-evaluated with event Y, false

— Pattern FAIL, more backtracking

State 6
(avgp)

Current state Row evaluated Event Event met New state
0 2 strt Y 1

1 3 X Y 2

2 4 X Y 2

2 5 X IGNORED 2

2 5 Y N FAIL

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

49

Different pattern match due to non-deterministic state

(STRT X+ Y+ W+ Z+ AVGP)

{ sYymoL | MN |{ TSTAMP |{} PATTERN |{} PRICE |

v/v v/w v/z

j State 6
w z avep (avgp)

1 OSCORP (null) 81-APR-11 (null)

2 OSCORP 102-APR-11 STRT
3 OSCORP 103-APR-11 X
4 0SCORP 104-APR-11 X
5 OSCORP 105-APR-11 X
6 OSCORP 106-APR-11Y
7 OSCORP 107-APR-11W
8 OSCORP 108-APR-11 7

9 OSCORP (null) 09-APR-11 (null)

* More backtracking
— Row 4 re-evaluated with event Y, false

— Pattern FAIL, more backtracking

22
22
19
18
17
20
17
20
16

Current state Row evaluated Event Event met New state
0 2 strt Y 1

1 3 X Y 2

2 4 X IGNORED 2

2 4 Y N FAIL

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

50

Different pattern match due to non-deterministic state

(STRT X+ Y+ W+ Z+ AVGP)

{ sYymoL | MN |{ TSTAMP |{} PATTERN |{} PRICE |

% ‘) [y ([
Yy w z avgp

1 OSCORP
2 OSCORP
3 OSCORP
4 0SCORP
5 OSCORP
6 OSCORP
7 OSCORP
8 OSCORP
9 OSCORP

(null) O1-APR-
102-APR-
103-APR-
104-APR-
105-APR-
1 06-APR-
107-APR-
108-APR-

(null) 09-APR-

* Backtracking fails

11 (null)
11 STRT
11 X

11 X

11 X

11Y

11 W

117

11 (null)

22
22
19
18
17
20
17
20
16

— No more alternate events in row set 2 —8

— Pattern fail, row 2 skipped

State 6
(avgp)
Current state Row evaluated Event Event met New state
0 2 Row skipped
0 3 Strt Y 1

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

il

Backtracking

* Non-deterministic state machine captures state at each row at pattern
evaluation time and pushes details into stack

— Backtracking simply walks back through the stack, looking for possible re-evaluation

* Moving forward we put more and more rows into the stack
— Repeated within each partition

* Depending on complexity of pattern this can become memory-consuming
— Chance to run out of PGA for large, complex pattern matching statements
— Circumvent such situations by allocating more memory

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. | 52

Summary

SQL Pattern Matching is a powerful tool

Easy data analysis out-of-the-box with built-in measures
MATCH_NUMBER and CLASSIFIER

The importance to understand greedy and reluctant
guantifiers

How do state machines and back tracking work

Go and use SQL Pattern Matching to your advantage!

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

ORACLE

